Wednesday, December 3, 2025

✅ UNIT 2 — COMBINATORICS (DISCRETE MATHEMATICS)

 

UNIT 2 — COMBINATORICS

1. Permutations & Combinations

Permutation

Arrangement of objects where order matters.

  • Formula:

    nPr=n!(nr)!^nP_r = \frac{n!}{(n-r)!}

Example:
Number of ways to arrange 3 letters from ABCD
= 4P3=24^4P_3 = 24

Combination

Selection of objects where order does NOT matter.

  • Formula:

    nCr=n!r!(nr)!^nC_r = \frac{n!}{r!(n-r)!}

Example:
Choose 2 students from 5
= 5C2=10^5C_2 = 10


2. Summation

Properties of Σ:

  • Linearity:
    (ai+bi)=ai+bi\sum (a_i + b_i) = \sum a_i + \sum b_i

  • Constant factor:
    cai=cai\sum c\cdot a_i = c\sum a_i


3. Binomial Function

Binomial Theorem:

(a+b)n=k=0nnCkankbk(a + b)^n = \sum_{k=0}^{n} {^nC_k a^{n-k} b^k}

Properties:

  • Number of terms = n+1

  • Middle term depends on n (odd/even)

  • Coefficients symmetric:

    nCk=nCnk^nC_k = ^nC_{n-k}

4. Generating Functions

Used in recurrence and combinatorics.

Basic idea:

If we have sequence {a₀, a₁, a₂, …}
Generating function is:

G(x)=a0+a1x+a2x2+a3x3+G(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots

Example: For sequence 1,1,1,1,…

G(x)=11xG(x) = \frac{1}{1 - x}

5. Recurrence Relation

Example: Fibonacci

f(n)=f(n1)+f(n2)f(n) = f(n-1) + f(n-2)

Solving Linear Recurrences

General form:

an=c1an1+c2an2a_n = c_1 a_{n-1} + c_2 a_{n-2}

Steps:

  1. Form characteristic equation

    r2c1rc2=0r^2 - c_1 r - c_2 = 0
  2. Find roots r₁, r₂

  3. General solution:

    an=Ar1n+Br2na_n = A r_1^n + B r_2^n

No comments:

Post a Comment

✅ UNIT 4 — POSET, LATTICES & BOOLEAN ALGEBRA (DISCRETE MATHEMATICS)

  ✅ UNIT 4 — POSET, LATTICES & BOOLEAN ALGEBRA 1. Poset Partially Ordered Set A pair (A, ≤) where relation is: Reflexive Anti-...