✅ Day 5 Solution - DSA with Java

 

✅ 1. Implement Merge Sort and Quick Sort

🔹 Merge Sort


public class MergeSort { public static void mergeSort(int[] arr, int left, int right) { if (left < right) { int mid = (left + right) / 2; mergeSort(arr, left, mid); mergeSort(arr, mid + 1, right); merge(arr, left, mid, right); } } public static void merge(int[] arr, int left, int mid, int right) { int n1 = mid - left + 1, n2 = right - mid; int[] L = new int[n1]; int[] R = new int[n2]; for (int i = 0; i < n1; i++) L[i] = arr[left + i]; for (int j = 0; j < n2; j++) R[j] = arr[mid + 1 + j]; int i = 0, j = 0, k = left; while (i < n1 && j < n2) { if (L[i] <= R[j]) arr[k++] = L[i++]; else arr[k++] = R[j++]; } while (i < n1) arr[k++] = L[i++]; while (j < n2) arr[k++] = R[j++]; } }

🔹 Quick Sort


public class QuickSort { public static void quickSort(int[] arr, int low, int high) { if (low < high) { int pi = partition(arr, low, high); quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } } public static int partition(int[] arr, int low, int high) { int pivot = arr[high]; int i = low - 1; for (int j = low; j < high; j++) { if (arr[j] < pivot) { i++; // Swap int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } } // Final pivot swap int temp = arr[i + 1]; arr[i + 1] = arr[high]; arr[high] = temp; return i + 1; } }

✅ 2. LeetCode Problems


🔸 Merge Sorted Array

Merge nums2 into nums1 sorted in-place.


public class MergeSortedArray { public static void merge(int[] nums1, int m, int[] nums2, int n) { int i = m - 1, j = n - 1, k = m + n - 1; while (i >= 0 && j >= 0) { nums1[k--] = (nums1[i] > nums2[j]) ? nums1[i--] : nums2[j--]; } while (j >= 0) { nums1[k--] = nums2[j--]; } } }

🔸 Sort an Array

Use any sorting method. Here's Merge Sort used:


public class SortAnArray { public static int[] sortArray(int[] nums) { mergeSort(nums, 0, nums.length - 1); return nums; } public static void mergeSort(int[] arr, int l, int r) { if (l < r) { int m = (l + r) / 2; mergeSort(arr, l, m); mergeSort(arr, m + 1, r); merge(arr, l, m, r); } } public static void merge(int[] arr, int l, int m, int r) { int n1 = m - l + 1, n2 = r - m; int[] L = new int[n1]; int[] R = new int[n2]; for (int i = 0; i < n1; ++i) L[i] = arr[l + i]; for (int j = 0; j < n2; ++j) R[j] = arr[m + 1 + j]; int i = 0, j = 0, k = l; while (i < n1 && j < n2) arr[k++] = (L[i] <= R[j]) ? L[i++] : R[j++]; while (i < n1) arr[k++] = L[i++]; while (j < n2) arr[k++] = R[j++]; } }

✅ 3. Non-Recursive Quick Sort (Iterative)


import java.util.Stack; public class QuickSortIterative { public static void quickSort(int[] arr) { Stack<int[]> stack = new Stack<>(); stack.push(new int[]{0, arr.length - 1}); while (!stack.isEmpty()) { int[] range = stack.pop(); int low = range[0], high = range[1]; if (low < high) { int pi = partition(arr, low, high); stack.push(new int[]{low, pi - 1}); stack.push(new int[]{pi + 1, high}); } } } private static int partition(int[] arr, int low, int high) { int pivot = arr[high], i = low - 1; for (int j = low; j < high; j++) { if (arr[j] < pivot) { i++; // Swap int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } } // Final pivot placement int temp = arr[i + 1]; arr[i + 1] = arr[high]; arr[high] = temp; return i + 1; } }

✅ 4. Visualize Merge vs Quick Sort

You can interactively visualize how Merge and Quick Sort work at:

🔗 Visualgo.net – Sorting Visualizations

Click:

  • Merge Sort → observe divide → merge steps

  • Quick Sort → watch pivot partitioning → recursive reduction

💡 Use small array sizes (e.g. 10 elements) to step-through for learning.

Comments

Popular posts from this blog

Raster scan Vs Vector Scan

Inheritance

unit -1 Introduction of Image processing